Analysing the Quantum Fourier Transform for finite groups through the Hidden Subgroup Problem
نویسنده
چکیده
We present an in-depth study of the Quantum Fourier Transform for finite groups and the underlying mathematics. The study includes a look at the most salient results linking the Quantum Fourier Transform to the Hidden Subgroup Problem. This provides a useful context for determining the extent to which the Fourier transform can serve to recognize periodicity of a function on a finite group. Résumé Cette thèse vise à analyser en profondeur la transformée de Fourier quantique pour groupes finis et la théorie mathématique sur laquelle elle est construite. Elle comporte également une étude des résultats les plus importants parmi ceux qui font un lien entre la transformée de Fourier et le problème du sous-groupe caché. Ce dernier fournit un contexte utile pour déterminer l’aptitude de la transformée de Fourier à reconnâıtre une fonction périodique définie sur un groupe fini.
منابع مشابه
QIP Note: On the Quantum Fourier Transform and Applications
This note introduces Fourier transforms over finite Abelian groups, and shows how this can be used to find the period of any efficiently computable periodic function. This in particular implies an efficient quantum algorithm for factoring. In the appendix we show how this generalizes to solving the hidden subgroup problem in any Abelian group. Efficient quantum algorithms for discrete log (and ...
متن کاملQuantum Mechanics on Finite Groups
Although a few new results are presented, this is mainly a review article on the relationship between finite-dimensional quantum mechanics and finite groups. The main motivation for this discussion is the hidden subgroup problem of quantum computation theory. A unifying role is played by a mathematical structure that we call a Hilbert ∗-algebra. After reviewing material on unitary representatio...
متن کاملThe Hidden Subgroup Problem in Affine Groups: Basis Selection in Fourier Sampling
Abstract Some quantum algorithms, including Shor’s celebrated factoring and discrete log algorithms, proceed by reduction to a hidden subgroup problem, in which a subgroup H of a group G must be determined from a quantum state ψ uniformly supported on a left coset of H . These hidden subgroup problems are then solved by Fourier sampling: the quantum Fourier transform of ψ is computed and measur...
متن کاملThe Power of Strong Fourier Sampling: Quantum Algorithms for Affine Groups and Hidden Shifts
Many quantum algorithms, including Shor’s celebrated factoring and discrete log algorithms, proceed by reduction to a hidden subgroup problem, in which an unknown subgroup H of a group G must be determined from a quantum state ψ over G that is uniformly supported on a left coset of H . These hidden subgroup problems are typically solved by Fourier sampling : the quantum Fourier transform of ψ i...
متن کاملControl/target Inversion Property on Abelian Groups
We show that the quantum Fourier transform on finite fields used to solve query problems is a special case of the usual quantum Fourier transform on finite abelian groups. We show that the control/target inversion property holds in general. We apply this to get a sharp query complexity separation between classical and quantum algorithms for a hidden homomorphism problem on finite abelian groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001